forked from forgejo/forgejo
Switch to keybase go-crypto (for some elliptic curve key) + test (#1925)
* Switch to keybase go-crypto (for some elliptic curve key) + test
* Use assert.NoError
and add a little more context to failing test description
* Use assert.(No)Error everywhere 🌈
and assert.Error in place of .Nil/.NotNil
This commit is contained in:
parent
5e92b82ac6
commit
274149dd14
56 changed files with 10621 additions and 925 deletions
463
vendor/github.com/keybase/go-crypto/openpgp/read.go
generated
vendored
Normal file
463
vendor/github.com/keybase/go-crypto/openpgp/read.go
generated
vendored
Normal file
|
@ -0,0 +1,463 @@
|
|||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package openpgp implements high level operations on OpenPGP messages.
|
||||
package openpgp // import "github.com/keybase/go-crypto/openpgp"
|
||||
|
||||
import (
|
||||
"crypto"
|
||||
"crypto/hmac"
|
||||
_ "crypto/sha256"
|
||||
"hash"
|
||||
"io"
|
||||
"strconv"
|
||||
|
||||
"github.com/keybase/go-crypto/openpgp/armor"
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/openpgp/packet"
|
||||
)
|
||||
|
||||
// SignatureType is the armor type for a PGP signature.
|
||||
var SignatureType = "PGP SIGNATURE"
|
||||
|
||||
// readArmored reads an armored block with the given type.
|
||||
func readArmored(r io.Reader, expectedType string) (body io.Reader, err error) {
|
||||
block, err := armor.Decode(r)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
if block.Type != expectedType {
|
||||
return nil, errors.InvalidArgumentError("expected '" + expectedType + "', got: " + block.Type)
|
||||
}
|
||||
|
||||
return block.Body, nil
|
||||
}
|
||||
|
||||
// MessageDetails contains the result of parsing an OpenPGP encrypted and/or
|
||||
// signed message.
|
||||
type MessageDetails struct {
|
||||
IsEncrypted bool // true if the message was encrypted.
|
||||
EncryptedToKeyIds []uint64 // the list of recipient key ids.
|
||||
IsSymmetricallyEncrypted bool // true if a passphrase could have decrypted the message.
|
||||
DecryptedWith Key // the private key used to decrypt the message, if any.
|
||||
IsSigned bool // true if the message is signed.
|
||||
SignedByKeyId uint64 // the key id of the signer, if any.
|
||||
SignedBy *Key // the key of the signer, if available.
|
||||
LiteralData *packet.LiteralData // the metadata of the contents
|
||||
UnverifiedBody io.Reader // the contents of the message.
|
||||
|
||||
// If IsSigned is true and SignedBy is non-zero then the signature will
|
||||
// be verified as UnverifiedBody is read. The signature cannot be
|
||||
// checked until the whole of UnverifiedBody is read so UnverifiedBody
|
||||
// must be consumed until EOF before the data can trusted. Even if a
|
||||
// message isn't signed (or the signer is unknown) the data may contain
|
||||
// an authentication code that is only checked once UnverifiedBody has
|
||||
// been consumed. Once EOF has been seen, the following fields are
|
||||
// valid. (An authentication code failure is reported as a
|
||||
// SignatureError error when reading from UnverifiedBody.)
|
||||
SignatureError error // nil if the signature is good.
|
||||
Signature *packet.Signature // the signature packet itself, if v4 (default)
|
||||
SignatureV3 *packet.SignatureV3 // the signature packet if it is a v2 or v3 signature
|
||||
|
||||
decrypted io.ReadCloser
|
||||
}
|
||||
|
||||
// A PromptFunction is used as a callback by functions that may need to decrypt
|
||||
// a private key, or prompt for a passphrase. It is called with a list of
|
||||
// acceptable, encrypted private keys and a boolean that indicates whether a
|
||||
// passphrase is usable. It should either decrypt a private key or return a
|
||||
// passphrase to try. If the decrypted private key or given passphrase isn't
|
||||
// correct, the function will be called again, forever. Any error returned will
|
||||
// be passed up.
|
||||
type PromptFunction func(keys []Key, symmetric bool) ([]byte, error)
|
||||
|
||||
// A keyEnvelopePair is used to store a private key with the envelope that
|
||||
// contains a symmetric key, encrypted with that key.
|
||||
type keyEnvelopePair struct {
|
||||
key Key
|
||||
encryptedKey *packet.EncryptedKey
|
||||
}
|
||||
|
||||
// ReadMessage parses an OpenPGP message that may be signed and/or encrypted.
|
||||
// The given KeyRing should contain both public keys (for signature
|
||||
// verification) and, possibly encrypted, private keys for decrypting.
|
||||
// If config is nil, sensible defaults will be used.
|
||||
func ReadMessage(r io.Reader, keyring KeyRing, prompt PromptFunction, config *packet.Config) (md *MessageDetails, err error) {
|
||||
var p packet.Packet
|
||||
|
||||
var symKeys []*packet.SymmetricKeyEncrypted
|
||||
var pubKeys []keyEnvelopePair
|
||||
var se *packet.SymmetricallyEncrypted
|
||||
|
||||
packets := packet.NewReader(r)
|
||||
md = new(MessageDetails)
|
||||
md.IsEncrypted = true
|
||||
|
||||
// The message, if encrypted, starts with a number of packets
|
||||
// containing an encrypted decryption key. The decryption key is either
|
||||
// encrypted to a public key, or with a passphrase. This loop
|
||||
// collects these packets.
|
||||
ParsePackets:
|
||||
for {
|
||||
p, err = packets.Next()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
switch p := p.(type) {
|
||||
case *packet.SymmetricKeyEncrypted:
|
||||
// This packet contains the decryption key encrypted with a passphrase.
|
||||
md.IsSymmetricallyEncrypted = true
|
||||
symKeys = append(symKeys, p)
|
||||
case *packet.EncryptedKey:
|
||||
// This packet contains the decryption key encrypted to a public key.
|
||||
md.EncryptedToKeyIds = append(md.EncryptedToKeyIds, p.KeyId)
|
||||
switch p.Algo {
|
||||
case packet.PubKeyAlgoRSA, packet.PubKeyAlgoRSAEncryptOnly, packet.PubKeyAlgoElGamal, packet.PubKeyAlgoECDH:
|
||||
break
|
||||
default:
|
||||
continue
|
||||
}
|
||||
var keys []Key
|
||||
if p.KeyId == 0 {
|
||||
keys = keyring.DecryptionKeys()
|
||||
} else {
|
||||
keys = keyring.KeysById(p.KeyId, nil)
|
||||
}
|
||||
for _, k := range keys {
|
||||
pubKeys = append(pubKeys, keyEnvelopePair{k, p})
|
||||
}
|
||||
case *packet.SymmetricallyEncrypted:
|
||||
se = p
|
||||
break ParsePackets
|
||||
case *packet.Compressed, *packet.LiteralData, *packet.OnePassSignature:
|
||||
// This message isn't encrypted.
|
||||
if len(symKeys) != 0 || len(pubKeys) != 0 {
|
||||
return nil, errors.StructuralError("key material not followed by encrypted message")
|
||||
}
|
||||
packets.Unread(p)
|
||||
return readSignedMessage(packets, nil, keyring)
|
||||
}
|
||||
}
|
||||
|
||||
var candidates []Key
|
||||
var decrypted io.ReadCloser
|
||||
|
||||
// Now that we have the list of encrypted keys we need to decrypt at
|
||||
// least one of them or, if we cannot, we need to call the prompt
|
||||
// function so that it can decrypt a key or give us a passphrase.
|
||||
FindKey:
|
||||
for {
|
||||
// See if any of the keys already have a private key available
|
||||
candidates = candidates[:0]
|
||||
candidateFingerprints := make(map[string]bool)
|
||||
|
||||
for _, pk := range pubKeys {
|
||||
if pk.key.PrivateKey == nil {
|
||||
continue
|
||||
}
|
||||
if !pk.key.PrivateKey.Encrypted {
|
||||
if len(pk.encryptedKey.Key) == 0 {
|
||||
pk.encryptedKey.Decrypt(pk.key.PrivateKey, config)
|
||||
}
|
||||
if len(pk.encryptedKey.Key) == 0 {
|
||||
continue
|
||||
}
|
||||
decrypted, err = se.Decrypt(pk.encryptedKey.CipherFunc, pk.encryptedKey.Key)
|
||||
if err != nil && err != errors.ErrKeyIncorrect {
|
||||
return nil, err
|
||||
}
|
||||
if decrypted != nil {
|
||||
md.DecryptedWith = pk.key
|
||||
break FindKey
|
||||
}
|
||||
} else {
|
||||
fpr := string(pk.key.PublicKey.Fingerprint[:])
|
||||
if v := candidateFingerprints[fpr]; v {
|
||||
continue
|
||||
}
|
||||
candidates = append(candidates, pk.key)
|
||||
candidateFingerprints[fpr] = true
|
||||
}
|
||||
}
|
||||
|
||||
if len(candidates) == 0 && len(symKeys) == 0 {
|
||||
return nil, errors.ErrKeyIncorrect
|
||||
}
|
||||
|
||||
if prompt == nil {
|
||||
return nil, errors.ErrKeyIncorrect
|
||||
}
|
||||
|
||||
passphrase, err := prompt(candidates, len(symKeys) != 0)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Try the symmetric passphrase first
|
||||
if len(symKeys) != 0 && passphrase != nil {
|
||||
for _, s := range symKeys {
|
||||
key, cipherFunc, err := s.Decrypt(passphrase)
|
||||
if err == nil {
|
||||
decrypted, err = se.Decrypt(cipherFunc, key)
|
||||
if err != nil && err != errors.ErrKeyIncorrect {
|
||||
return nil, err
|
||||
}
|
||||
if decrypted != nil {
|
||||
break FindKey
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
md.decrypted = decrypted
|
||||
if err := packets.Push(decrypted); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return readSignedMessage(packets, md, keyring)
|
||||
}
|
||||
|
||||
// readSignedMessage reads a possibly signed message if mdin is non-zero then
|
||||
// that structure is updated and returned. Otherwise a fresh MessageDetails is
|
||||
// used.
|
||||
func readSignedMessage(packets *packet.Reader, mdin *MessageDetails, keyring KeyRing) (md *MessageDetails, err error) {
|
||||
if mdin == nil {
|
||||
mdin = new(MessageDetails)
|
||||
}
|
||||
md = mdin
|
||||
|
||||
var p packet.Packet
|
||||
var h hash.Hash
|
||||
var wrappedHash hash.Hash
|
||||
FindLiteralData:
|
||||
for {
|
||||
p, err = packets.Next()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
switch p := p.(type) {
|
||||
case *packet.Compressed:
|
||||
if err := packets.Push(p.Body); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
case *packet.OnePassSignature:
|
||||
if !p.IsLast {
|
||||
return nil, errors.UnsupportedError("nested signatures")
|
||||
}
|
||||
|
||||
h, wrappedHash, err = hashForSignature(p.Hash, p.SigType)
|
||||
if err != nil {
|
||||
md = nil
|
||||
return
|
||||
}
|
||||
|
||||
md.IsSigned = true
|
||||
md.SignedByKeyId = p.KeyId
|
||||
keys := keyring.KeysByIdUsage(p.KeyId, nil, packet.KeyFlagSign)
|
||||
if len(keys) > 0 {
|
||||
md.SignedBy = &keys[0]
|
||||
}
|
||||
case *packet.LiteralData:
|
||||
md.LiteralData = p
|
||||
break FindLiteralData
|
||||
}
|
||||
}
|
||||
|
||||
if md.SignedBy != nil {
|
||||
md.UnverifiedBody = &signatureCheckReader{packets, h, wrappedHash, md}
|
||||
} else if md.decrypted != nil {
|
||||
md.UnverifiedBody = checkReader{md}
|
||||
} else {
|
||||
md.UnverifiedBody = md.LiteralData.Body
|
||||
}
|
||||
|
||||
return md, nil
|
||||
}
|
||||
|
||||
// hashForSignature returns a pair of hashes that can be used to verify a
|
||||
// signature. The signature may specify that the contents of the signed message
|
||||
// should be preprocessed (i.e. to normalize line endings). Thus this function
|
||||
// returns two hashes. The second should be used to hash the message itself and
|
||||
// performs any needed preprocessing.
|
||||
func hashForSignature(hashId crypto.Hash, sigType packet.SignatureType) (hash.Hash, hash.Hash, error) {
|
||||
if !hashId.Available() {
|
||||
return nil, nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hashId)))
|
||||
}
|
||||
h := hashId.New()
|
||||
|
||||
switch sigType {
|
||||
case packet.SigTypeBinary:
|
||||
return h, h, nil
|
||||
case packet.SigTypeText:
|
||||
return h, NewCanonicalTextHash(h), nil
|
||||
}
|
||||
|
||||
return nil, nil, errors.UnsupportedError("unsupported signature type: " + strconv.Itoa(int(sigType)))
|
||||
}
|
||||
|
||||
// checkReader wraps an io.Reader from a LiteralData packet. When it sees EOF
|
||||
// it closes the ReadCloser from any SymmetricallyEncrypted packet to trigger
|
||||
// MDC checks.
|
||||
type checkReader struct {
|
||||
md *MessageDetails
|
||||
}
|
||||
|
||||
func (cr checkReader) Read(buf []byte) (n int, err error) {
|
||||
n, err = cr.md.LiteralData.Body.Read(buf)
|
||||
if err == io.EOF {
|
||||
mdcErr := cr.md.decrypted.Close()
|
||||
if mdcErr != nil {
|
||||
err = mdcErr
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// signatureCheckReader wraps an io.Reader from a LiteralData packet and hashes
|
||||
// the data as it is read. When it sees an EOF from the underlying io.Reader
|
||||
// it parses and checks a trailing Signature packet and triggers any MDC checks.
|
||||
type signatureCheckReader struct {
|
||||
packets *packet.Reader
|
||||
h, wrappedHash hash.Hash
|
||||
md *MessageDetails
|
||||
}
|
||||
|
||||
func (scr *signatureCheckReader) Read(buf []byte) (n int, err error) {
|
||||
n, err = scr.md.LiteralData.Body.Read(buf)
|
||||
scr.wrappedHash.Write(buf[:n])
|
||||
if err == io.EOF {
|
||||
var p packet.Packet
|
||||
p, scr.md.SignatureError = scr.packets.Next()
|
||||
if scr.md.SignatureError != nil {
|
||||
return
|
||||
}
|
||||
|
||||
var ok bool
|
||||
if scr.md.Signature, ok = p.(*packet.Signature); ok {
|
||||
var err error
|
||||
if fingerprint := scr.md.Signature.IssuerFingerprint; fingerprint != nil {
|
||||
if !hmac.Equal(fingerprint, scr.md.SignedBy.PublicKey.Fingerprint[:]) {
|
||||
err = errors.StructuralError("bad key fingerprint")
|
||||
}
|
||||
}
|
||||
if err == nil {
|
||||
err = scr.md.SignedBy.PublicKey.VerifySignature(scr.h, scr.md.Signature)
|
||||
}
|
||||
scr.md.SignatureError = err
|
||||
} else if scr.md.SignatureV3, ok = p.(*packet.SignatureV3); ok {
|
||||
scr.md.SignatureError = scr.md.SignedBy.PublicKey.VerifySignatureV3(scr.h, scr.md.SignatureV3)
|
||||
} else {
|
||||
scr.md.SignatureError = errors.StructuralError("LiteralData not followed by Signature")
|
||||
return
|
||||
}
|
||||
|
||||
// The SymmetricallyEncrypted packet, if any, might have an
|
||||
// unsigned hash of its own. In order to check this we need to
|
||||
// close that Reader.
|
||||
if scr.md.decrypted != nil {
|
||||
mdcErr := scr.md.decrypted.Close()
|
||||
if mdcErr != nil {
|
||||
err = mdcErr
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// CheckDetachedSignature takes a signed file and a detached signature and
|
||||
// returns the signer if the signature is valid. If the signer isn't known,
|
||||
// ErrUnknownIssuer is returned.
|
||||
func CheckDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, err error) {
|
||||
signer, _, err = checkDetachedSignature(keyring, signed, signature)
|
||||
return signer, err
|
||||
}
|
||||
|
||||
func checkDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, issuer *uint64, err error) {
|
||||
var issuerKeyId uint64
|
||||
var issuerFingerprint []byte
|
||||
var hashFunc crypto.Hash
|
||||
var sigType packet.SignatureType
|
||||
var keys []Key
|
||||
var p packet.Packet
|
||||
|
||||
packets := packet.NewReader(signature)
|
||||
for {
|
||||
p, err = packets.Next()
|
||||
if err == io.EOF {
|
||||
return nil, nil, errors.ErrUnknownIssuer
|
||||
}
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
switch sig := p.(type) {
|
||||
case *packet.Signature:
|
||||
if sig.IssuerKeyId == nil {
|
||||
return nil, nil, errors.StructuralError("signature doesn't have an issuer")
|
||||
}
|
||||
issuerKeyId = *sig.IssuerKeyId
|
||||
hashFunc = sig.Hash
|
||||
sigType = sig.SigType
|
||||
issuerFingerprint = sig.IssuerFingerprint
|
||||
case *packet.SignatureV3:
|
||||
issuerKeyId = sig.IssuerKeyId
|
||||
hashFunc = sig.Hash
|
||||
sigType = sig.SigType
|
||||
default:
|
||||
return nil, nil, errors.StructuralError("non signature packet found")
|
||||
}
|
||||
|
||||
keys = keyring.KeysByIdUsage(issuerKeyId, issuerFingerprint, packet.KeyFlagSign)
|
||||
if len(keys) > 0 {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if len(keys) == 0 {
|
||||
panic("unreachable")
|
||||
}
|
||||
|
||||
h, wrappedHash, err := hashForSignature(hashFunc, sigType)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
if _, err := io.Copy(wrappedHash, signed); err != nil && err != io.EOF {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
for _, key := range keys {
|
||||
switch sig := p.(type) {
|
||||
case *packet.Signature:
|
||||
err = key.PublicKey.VerifySignature(h, sig)
|
||||
case *packet.SignatureV3:
|
||||
err = key.PublicKey.VerifySignatureV3(h, sig)
|
||||
default:
|
||||
panic("unreachable")
|
||||
}
|
||||
|
||||
if err == nil {
|
||||
return key.Entity, &issuerKeyId, nil
|
||||
}
|
||||
}
|
||||
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
// CheckArmoredDetachedSignature performs the same actions as
|
||||
// CheckDetachedSignature but expects the signature to be armored.
|
||||
func CheckArmoredDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, err error) {
|
||||
signer, _, err = checkArmoredDetachedSignature(keyring, signed, signature)
|
||||
return signer, err
|
||||
}
|
||||
|
||||
func checkArmoredDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, issuer *uint64, err error) {
|
||||
body, err := readArmored(signature, SignatureType)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
return checkDetachedSignature(keyring, signed, body)
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue